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Abstract—In this paper we construct an explicit one-dimensional constitutive model that is capable
of describing some aspects of the thermomechanical response of a shape-memory alloy. The model
consists of a Helmholtz free-energy function, a kinetic relation and a nucleation criterion. The free-
energy is associated with a three-well potential energy function; the kinetic relation is based on
thermal activation theory; nucleation is assumed to occur at a critical value of the appropriate
energy barrier. The predictions of the model in various quasi-static thermomechanical loadings are
examined and compared with experimental observations.

1. INTRODUCTION

Thermoelasticity theory has been used to study certain general issues pertaining to solids
that undergo reversible stress- and temperature-induced phase transitions. In this theory,
the potential energy function that characterizes the material, as a function of deformation
gradient, has multiple energy-wells for certain ranges of stress and temperature, and each
energy-well is identified with a phase (or variant of a phase) of the material. For example,
the studies reported by Abeyaratne (1983), Ball and James (1987) and Ericksen (1975)
address issues pertaining to stable equilibrium configurations of such materials, while
Abeyaratne and Knowles (1988, 1990, 1991, 1992) and Heidug and Lehner (1985) examine
questions related to evolution.

A complete constitutive theory that describes the behavior of such materials consists
of a Helmholtz free-energy function which describes the response of each individual phase,
a nucleation criterion which signals the conditions under which the transition from one
phase to another commences, and a kinetic law which characterizes the rate at which this
transition progresses. Explicit examples of these ingredients have been constructed by
various authors. For example, Ericksen (1986) and Silling (1989) have constructed three-
dimensional Helmholtz free-energy functions that model certain crystals. Falk (1980) has
studied a one-dimensional polynomial free-energy function and Jiang (1992) has used a
similar characterization in anti-plane shear. Models of kinetic relations have been
constructed, for example, by Otsuka et al. (1976) by relating phase boundary motion to
dislocation motion and by Achenbach (1989) and Miiller and Wilmansky (1981) by using
certain statistical considerations.

Recently, Abeyaratne and Knowles (1993) presented, in one dimension, simple models
for each of these ingredients: their Helmholtz free-energy function was associated with a
piecewise linear material, while their kinetic relation was based on thermal activation
theory ; they took nucleation to occur at a critical value of ‘driving force’. They also made
a qualitative comparison of their theory with certain experiments on some shape memory
alloys.

The present study generalizes the model of Abeyaratne and Knowles (1993). The
potential energy function in the aforementioned model has at most two energy-wells, and
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thus it only accounts for two phases. However, even in the simplest one-dimensional setting,
one often encounters three material configurations—a parent phase and two variants of the
product phase. The principal generalization of the present paper is to construct a three-
well energy function analogous to the two-well model. This allows us to simulate some
experiments such as the one carried out by Ehrenstein (1985), in which a bar composed
initially of equal amounts of two martensitic variants was subjected to a slowly oscillating
stress, and at the same time was heated and then cooled. At various stages during the
ensuing process, the bar involved two martensitic variants, two martensitic variants and
austenite, one martensitic variant and austenite, and pure austenite. A three-well energy is
essential for modeling such a phenomenon.

As in Abeyaratne and Knowles (1993), the kinetic law utilized in the present study is
based on thermal activation theory. The nucleation criterion that we adopt here is based
on a critical value of the appropriate ‘energy barrier’ and is motivated, in part, by the
models used to describe nucleation in the materials science literature ; see e.g. Christian
(1975) and Fine (1975).

The number of interfaces that can occur in the bar is controlled by the nucleation
criterion. For the particular criterion adopted here, this number is small, usually one, so
that if many interfaces are to be allowed, we would have to modify this ingredient of the
present model. In some experiments, ¢.g. those of Burkart and Read (1953), Grujicic ef al.
(1985), Krishnan (1985), Otsuka et al. (1976), the transformation has been observed to
occur by the propagation of a single interface ; in others, however, e.g. those of Miiller and
Xu (1991), a large number of interfaces have been seen.

In Section 2 we briefly outline the version of thermoelasticity that we intend to use. In
Section 3 we construct the three-well energy function and discuss the stability of the various
phases. Next, in Section 4 we calculate the energy barriers associated with this energy
function and use them to establish the nucleation criterion and kinetic relation. In Section
5 we carry out a number of simulations and compare them with experimental observations.

2. PRELIMINARIES

In this section we briefly review some relevant concepts from the continuum theory of
thermomechanical processes within a purely one-dimensional setting that corresponds to
uniaxial stress in a bar. A more detailed discussion of the one-dimensional theory may be
found in Abeyaratne and Knowles (1993) ; some general aspects of the three-dimensional
theory may be found in Abeyaratne and Knowles (1990).

The bulk behavior of a thermoelastic material may be characterized by its Helmholtz
free-energy per unit mass y(y, 8), where y is strain and 6 is temperature ; the stress ¢ and
specific entropy # at a particle are then constitutively related to y, 8 through

o =pY,(,0), n=—e(0), .1

where p denotes the mass density in the reference configuration. The potential energy per
unit reference volume G(y; 8, ¢) of the material is defined by

G(y; 0,0) = py(y,0) —ov, (2.2)

and its value at an extremum of G (*; 8, ¢) coincides with the Gibbs free energy per unit
reference volume g(y, 8) = pyr(y, 8) — pyr, (v, 0)7.

In order to model a material that can undergo a thermoelastic phase transition, the
function G(*; 6, 6) should have multiple local minima (‘energy wells’) when the temperature
and stress take on suitable values ; the corresponding Helmholtz free-energy potential y (-, 0)
will be non-convex, and the stress—strain curve characterized by o = py,(y, #) will be non-
monotonic. In this theory, each local minimum of the potential energy function G, and
therefore each branch with positive slope of the stress-strain curve, is identified with a
different (metastable) phase of the material.
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Suppose that G(*; 0, ¢) has at least two local minima corresponding to a given tem-
perature @ and stress ¢, and let y = 3 = y(0,0) and y = § = (6, 6) denote the values of
strain at these two energy-wells. Then the strain at a particle that is subjected to this 8 and
o could be either 7 or 3 depending on which energy-well (i.e. phase) the particle is in. Let
x = s(¢) locate a point in the reference configuration at time 7; suppose that the particle
immediately to the left of x = s(¢) has a strain 7 while the strain on its right is 7 ; then
x = s(¢) denotes the location of a phase boundary, i.e. an interface that separates two
distinct phases of the material. During a quasi-static process, the rate of entropy production
I'(?) in a segment of the bar that contains the interface x = s(¢¥) but no other phase
boundaries, and which is at a uniform temperature 8(¢), can be shown to be

L) = f(03(5)/0(2), 23)

where

[=G(;6,0)-G(7;0,0); (2.4)

fis known as the ‘driving force’ acting on the phase boundary. A discussion of the notion
of driving force in a general three-dimensional setting which includes the effects of inertia
and is not restricted to thermoelastic materials may be found in Abeyaratne and Knowles
(1990). The second law of thermodynamics thus requires that the following entropy
inequality hold :

fi=o. 2.5)

If the driving force f happens to vanish, one speaks of the states (7,6) and (7, 0) as being
in ‘phase equilibrium’ and of the quasi-static process as taking place ‘reversibly’. If
G(}; 0,0) > G(y; 0,0), then f is positive and so according to (2.5) one has § > 0; thus if
the phase boundary propagates, it moves into the positive side and thereby transforms
particles from (7, 0) to (7, 6). In this sense, the material prefers the smaller minimum of G.
This is also true in the reverse case when G(7 ; 6,0) < G(7 ; 6, 0). One therefore speaks of
the phase associated with the lowest energy-well as being the stable phase.

By using the first law of thermodynamics one can show that the heat generated when
a unit mass of material changes phase from (3, 6) to (7,8) is f/p+ A where A = 6(7] —n) is
the latent heat; if the phase change occurs under conditions of phase equilibrium, then
f =0, and the heat generated is A.

Let x = 5(z) denote the Lagrangian location of a phase boundary at time ¢. As particles
cross this interface, they transform from one phase to another at a rate that is determined
by the underlying ‘kinetics’. The kinetics of the transformation control the rate of mass flux
ps across the phase boundary. If one assumes that this flux depends only on the states (y, 6)
and (7, 6) on either side of the interface, then the propagation of the phase boundary is
governed by a relation of the form

$=v(7,7,0), (2:6)

where the kinetic response function v is determined by the material. Alternatively, since the
constitutive relations ¢ = pl//7(§, 0) and ¢ = py,(7, 0) can be inverted (separately) for each

phase, one can express 7 and y in terms of ¢ and 6, and thus re-write the kinetic law (2.6)
in the form
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§ = v(e, ), 2.7)

where the function » depends on the two particular phases involved in the transformation
and is different for each pair of phases. Finally, by substituting the inverted stress—strain—
temperature relations into (2.4) one can express the driving force acting on an interface
between a given pair of phases as / = f(0, 6); this in turn can be inverted at each fixed 6,
and so the kinetic law can be expressed in the form

= V([ 6). (2.8)

The basic principles of the continuum theory do not provide any further information
regarding the kinetic response function V; in particular, explicit examples of ¥ must be
supplied by suitable constitutive modeling.

A particle changes its phase either when it crosses a moving phase boundary or by the
alternative mechanism of aucleation. Consider, for example, a quasi-static process in a bar
which involves only a single phase for some initial interval of time, and two-phase states at
subsequent times. The kinetic law describes the evolution of existing phase boundaries and
therefore is only operational once the bar is in a two-phase state. The transition of the bar
from a single-phase configuration to a two-phase configuration is controtled by a ‘nucleation
criterion”. If a particle is to change phase from a state (7,6) to a state (7,6) through
nucleation, some critical condition of the form ®(6, ) = 0 should be reached at that particle,
where @ depends on the pair of phases involved in the transition. Models for ® are often
based on the notion of ‘energy barriers’, as will be described in Section 4.

We close this section with a brief discussion of some qualitative features of the one-
dimensional model that is to be constructed in the sections to follow. Consider momentarily
the three-dimensional continuum theory, and suppose for purposes of discussion that the
material at hand exists in a cubic phase (austenite) and an orthorhombic phase (martensite) ;
an example of this is the class of Cu-Al-Ni shape-memory alloys studied extensively by
Otsuka and co-workers (e.g. Otsuka ez al., 1976), and more recently by Chu and James
{1993). In view of certain invaniance requirements, the associated three-dimensional poten-
tial energy function G must have seven energy-wells corresponding to the austenite phase
and the six ‘variants’ of martensite. During a uniaxial test of a suitably oriented single
crystal specimen, and for suitable values of temperature 8, the material is found to remain
in the cubic phase for sufficiently small values of stress, in the orthorhombic phase with the
long side of the crystal parallel to the tensile axis for sufficiently large tensile stresses, and
in the orthorhombic phase with its long side normal to the tensile axis {(i.e. in a different
variant of the orthorhombic phase) for sufficiently large compressive stresses. In the one-
dimensional theory we model this by allowing G to have three energy-wells for suitable ¢
and o ; the ones at the largest and smallest values of strain correspond to the two variants
of martensite just described, while the one at the intermediate value of strain is identified
with austenite. Since the variants of martensite are crystallographically identical to each
other when o = 0, the energy-wells corresponding to them are required to have the same
height at all temperatures whenever the stress vanishes. Moreover, all three energy-wells
should have the same height if the stress vanishes and the temperature coincides with the
iransformation temperature §,. At higher temperatures, the phase with greater symmetry
(austenite) is usually preferred over the low-symmetry phase, and so the model is to be
constructed such that the austenite energy-well is lower than the martensite wells when
8 > 8;; the teverse is true for § < 6,. The crystallographic similarity between the variants
also suggests that the specific entropy associated with them should be identical, and therefore
that the latent heat associated with the transformation from one variant to another should
be zero; this too is a feature of our model.

Finally, a note on terminology : for simplicity of presentation we shall sometimes speak
of the ‘three phases’ rather than the ‘one phase and two variants’ ; similarly we shall often
use the term ‘phase boundary’ generically to refer to both an interface between two phases
and to an interface between two variants (which ought to be called a twin boundary).
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3. HELMHOLTZ FREE-ENERGY FUNCTION

In this section we construct an explicit three-well Helmholtz free-energy function
¥(y, ) that characterizes the response of a multi-phase material ; the three energy-wells are
viewed as corresponding to an austenitic phase and to two variants of martensite. Recall
first that the elastic modulus u, coefficient of thermal expansion o and specific heat at
constant strain ¢ of a thermoelastic material are related to (y, ) through

Py (1 0) = 1, =0, O, (7, 0) =@, —Bge(y,0) = c. (ER))

Thus if x4, o and ¢ are constant on some domain of the (y, 8)-plane, then by integrating (3.1)
one finds that

P (1,0) = (/2)(y—g,)" — pory0+ pe(6— 0 log (6/6,)) + pi (3.2)

on that domain, where g, 0, and ¥, are constants.

Consider a material which exists in a high temperature phase austenite (4) and as two
variants (M * and M ~) of a low-temperature phase martensite. Suppose for simplicity that
the austenite and both martensitic variants have the same constant elastic modulus u > 0,
the same constant coefficient of thermal expansion « > 0 and the same constant specific
heat ¢ > 0. (The model that follows can be readily generalized to describe the case wherein
the different phases have different but constant material properties.) By (3.2), the Helmholtz
free-energy function ¥ (y, 8) associated with this material must have the form

W/2)(y—g1)* — poryd+pc(@—0log (6/6,))+pyr, on P,
pY(7,0) =< (U2 —g2)* — payb+ pc(6—010g (8/8,)) +pyr, on P, (3.3)
W2)(y—g3)* — poyf+ pc(0—0 log (8/0;)) +py; on Py,

where p is the mass density of the material in the reference configuration, and 6, g,, V.,
i=1,2,3, are nine additional material constants whose physical significance will be made
clear in what follows. The regions P,, P, and P, of the (y, §)-plane on which the three
expressions in (3.3) hold are the regions on which the respective phases 4, M+ and M~
exist ; they are assumed to have the form shown in Fig. 1, where in particular the boundaries
of P;, P, and P; have been taken to be straight lines. The temperature levels 8,, and 8,
denote two critical values of temperature : for 8 > 8,, the material only exists in its austenite

8 . Austenite

M Martensite

] ™M Martensite

Fig. 1. Regions P, P, and P, in the {y, §)-plane.
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form, whereas for # < 6, the material only exists in its martensite forms. Throughout this
paper we will restrict attention to temperatures less than 6,,.

We now impose a number of restrictions on the potential function G in order that it
properly model the stress-free response of the material we have in mind. Since ¢ and the
Helmbholtz free-energy function ¢ coincide when the stress vanishes, any characteristic to
be assigned to G at ¢ = 0 could be equivalently imposed on . First, we assume that there
is a special temperature 8, between 6, and 6, such that, when ¢ = 0, all three phases 4,
M™ and M~ are stable. Thus, the function (-, 6;) must have three local minima, i.e.
‘energy-wells’, and the values of y at these three minima must be the same. The minima
occurring at the smallest, intermediate and largest values of strain identified with M ™, 4
and M ™ respectively, Next, we require that the values of ¢ at the two martensite energy-
wells should coincide at every 6 at which these energy-wells exist, reflecting the fact that
M™ and M~ are ‘variants’ of each other. Finally, for 8 > 6, the martensite wells must be
higher than the austenite well, while for 8 < 8, they should be lower, so that austenite is
preferred at higher temperatures, martensite at lower temperatures. The special temperature
8, is called the transformation temperature.

On enforcing these requirements on the function ¥ defined by (3.3), one finds that

VY=Y~ =4 >0, (3.4
log (8:/01) =" (92~4:) + Ar/(cbir),
ua
log (8,/6,) = E(Qs ~g )+ Ar/(cly). 3.5)

In (3.5) we have let A7 denote the common value of ¥, — ¢, and ¥, — ¢, one can readily
verify that A represents the latent heat of the austenite — martensite transitions at the
transformation temperature &, and that the latent heat associated with the M *~M ~ tran-
sition is zero.

The stress-response function é(y, 8) = py, (7, 8) associated with (3.3) is

31(}"‘93)“,“‘29 on P,
a(y,0) = Cu(y—g,)—uad on Py, (3.6)
uy—gs)—po on Pj.

Two graphs of 6(y, #) versus y are shown in Fig. 2: Fig. 2(a) corresponds to a fixed value
of temperature in the range 6, < 6 < 8, and the stress-strain curve shows three rising
branches corresponding to the three phases 4, M * and M " ; Fig. 2(b) is associated with a
temperature in the range 0 < 0 < 6,, and the two rising branches of the stress—strain curve
correspond to the variants M* and M ™.

Of the three parameters ¢, g, and ¢, one is fixed by the choice of reference con-
figuration, while the other two are determined through the transformation strains. In
particular, if we choose stress-free austenite at the transformation temperature 67 to be the
reference state, then by setting 6 (0, 07) = 0 in (3.6), one obtains

g: = —aby. 3.7

Next, let y, (>0) denote the transformation strain [Fig. 2(a)] between each martensitic
variant and austenite. Then, from (3.6),

yr=g:—g =g1—¢g; > 0. (3.8)

(This can be readily generalized to the case where the transformation strain between phases
Aand M* is, say, y1, and that between 4 and M~ is y7 # y#.) Finally, if (3.4), (3.5), (3.7)
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2 Tt

X

() 0<0<8

Fig. 2. Stress-strain curves at constant temperatures 6.

and (3.9) are substituted back into (3.3), one finds that py(y,8) contains the term
oY+ (1/2)a*07 + ped log (6,/67) as an inessential linear function of temperature which may
be eliminated by taking

pY = —W2)a’d7, 6, =0r (3.9

In summary, the material at hand is characterized by the common elastic modulus g,
specific heat at constant strain ¢ and coefficient of thermal expansion « of the phases; the
stress-free transformation temperature §;; the mass density p in the reference state; the
latent heat A, at the temperature 8, and the transformation strain y;. The Helmholtz free-
energy function is given by combining (3.3) with (3.4), (3.5), (3.7-(3.9):

(1/2)y* — pory(0—07) + pc(1 —log (8/61)) on P,,
pY(7,0) = < (u/2)(y—y7)* — poy — ) (6 — 07) + pcb(1 —1og (6/6+)) — pAr(1—6/8;) on P,,
(W/2)(y+y1)? — poly +y7) (0 —07) + pcb(1 —log (8/67)) — pAr(1—6/67) on P,.

(3.10)

The various other thermo-mechanical characteristics of the material can now be derived
from (3.10). In particular, the stress-response function 6y, 8) = py,(y, ) is given by
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uy — uo(6—07) on P,
6(y,0) = {u(y—yr) —pa(6—67) on P, (3.11)
u(y+yr) —pa(@—07) on Ps.

In order to complete the description of the Helmholtz free-energy function we need to
specify the regions P, P, and P; of the (y, 8)-plane shown in Fig. 1, i.e. we need to specify
the boundary curves y = §,(8) shown in the figure. To this end, we first prescribe the stress-
levels at the local maxima and minima of the stress—strain curve. As indicated in Fig. 2, we
take, for simplicity, these stress-levels to be given by +6,(8) and +0,(0). In view of our
earlier assumption that the boundaries of the regions P, P,, P, are straight, the functions
oy(0) and o,,(0) must be linear in 8. Moreover, since according to Fig. 1 we must have
7200,) = 73(0,), 73(0s) = 74(8r) and 7,(0y) = 72(64), it follows that o,(6,) =0 and
6y (0y) — 0, (01) = uyr. Thus

ou(0) = uM(©-8,) for 6, < 0 < HM,}

o (0) = um(0—0,) +uM (0, —0,) —pyr for 0 <6 < 6,, (3.12)

where m and M are positive material constants. The equations y = §,(8), i = 1,2,3,4,
describing the boundaries of P,, P, and P; are then given by +0,(8) = 6 (5(6),0),i = 3,2,
and +0,,(0) =6(7(0),8),i=4,1.

Thus far, we have only described ¥ on the (‘metastable’) portion P,+ P,+ P; of the
(v, 6)-plane. It is not necessary, for the purposes of the present section, to specify an explicit
form for y on the remaining (‘unstable’) portion of this plane; any function ¥ which is
once continuously differentiable, is such that y, is negative on the unshaded portion of Fig.
I, and conforms with (3.3) would be acceptable. An infinite number of such functions exist,
provided only that the material parameters satisfy certain inequalities ; this is discussed in
the Appendix.

Next, it is useful to map the regions P, i = 1,2, 3, of the (y, 8)-plane associated with
the respective phases A, M ™ and M ~ on to the (6, 6)-plane using ¢ = 6 (y, §). The result of
this mapping is displayed in Fig. 3 where P; is the image of P,. Given the stress ¢ and
temperature 8 at a particle, Fig. 3 shows all of the phases that are available to that particle.

Finally, we address the issue of the stability of the phases. The potential energy function
G(7; 8,0) = py(y,0) — o0 of the material at hand can be calculated using (3.10). At each
(6,0), G has one or more local minima. Where G has multiple energy-wells, one can use
the explicit formula for G to determine the particular minimum that is smallest. This
determines the phase that is stable. The result of this calculation is displayed in Fig. 4. The
stress-level g, (f) indicated in the figure is given by

=L’“<ﬂ_1) 3.13
0o =" 5o -1). @13)

and is known as the Maxwell stress for the 4 — M * transition. The Maxwell stress for the
A—M~ and M —M " transitions are —o,(0) and 0 respectively. The two states 4 and
M ™ that are both associated with any particular point on the boundary ¢ = 0,(8) both
have the same value of potential energy G and both are stable; if these states co-exist and
are separated by a phase boundary, the driving force on that interface would be zero and
the phases would be in phase equilibrium.

Suppose momentarily that a particle always chooses the phase that is stable from
among all phases available to it. Then the response of a particle as the stress or temperature
is slowly varied is fully determined by Fig. 4. For example, consider a fixed temperature ¢
greater than the transformation temperature 8;. As the stress o is increased monotonically
from a sufficiently negative value, the particle is in the martensite variant M ~ until the
stress reaches the value —o,(6); it then transforms to austenite and remains in this phase
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Fig. 3. Available phases at a given (8, 0).

as the stress increases over the intermediate range —a,(8) < 6 < 0,(8); at o = ¢,(0) the
particle transforms to M * and remains there for ¢ > ¢,(8).

The immediately preceding discussion assumed that a particle is always in the stable
phase. In solids however, particles can often remain for long times in states that are merely
metastable and the transition from a metastable phase to a stable phase is controlled by
additional considerations, viz. nucleation and kinetics. We now turn to these issues.

4. NUCLEATION AND KINETICS

Given the stress o and temperature 8 at a particle, Fig. 3 shows the various phases that
that particle can adopt, while Fig. 4 indicates which among them is the stable phase. If a
particle happens to be in a phase that is not its stable phase, the questions of whether, and
how fast, it will transform into the stable phase are answered by a nucleation criterion and
a kinetic law. In this section we will describe simple models for nucleation and kinetics
under the assumption that the phase transitions are ‘thermally activated’.

A particle can change its phase in one of two ways: a particle whose phase is the
same as that of its neighboring particles could change its phase spontaneously through
‘nucleation’ if the stress and temperature at that particle satisfy an appropriate nucleation
criterion. Alternatively, a particle in one phase adjacent to a particle in a different phase
and separated from it by a phase boundary, will change phase through ‘growth’ if the phase
boundary propagates toward it, the motion of the phase boundary being controlled by a
kinetic law.

Energy barriers

Figure 5 shows two schematic graphs of the potential energy function G (y; 0, ¢) plotted
versus 7y for fixed (0, o). Figure 5(a) shows three local minima and corresponds to a pair
(8, o) at which all three phases co-exist [i.e. the point (8, o) lies in the region common to
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B Austenite M Martensite  4M Martensite
a

Fig. 4. The stable phases.

P, P, and P’ in Fig. 3]; Fig. 5(b) corresponds to a pair (#,¢) at which only the two
martensite variants co-exist. Figures 5{a) and (b) of the potential energy function cor-
respond to the respective Figs 2(a) and (b) of the stress—strain curve. The six guantities
b, (8, o) indicated in Fig. 5 are the energy barriers to a transformation from phase i to phase
j, where it is convenient to use the subscripts 1, 2 and 3 to refer to the phases 4, M+ and
M~ respectively. In order to calculate these energy barricrs, we need expressions for the
values of G at the local maxima, and this in turn requires a knowledge of the Helmholtz
free energy function ¢ on the unshaded regions of Fig. 1. While we can suitably continue
(3.10) into this ‘unstable region’ in many different ways, our present purpose is merely to
construct a simple continuum model that describes the various features of the theory.
Consequently, we will simply extend the parabolas which describe G near its local minima
in Fig. 5 until they intersect, and use the values of G at these intersection points as estimates
for the values of G at the local maxima. Using (3.10) to calculate G(y; 6,0) = p¥(y, H) —ay
and then carrying out this calculation leads to the following expressions for the six energy-
barriers :

b13(0,0) = )~ [0 +0,(0) +py /2],

b31(0,0) = )~ [0 +0,(0) — uyr/21%,

b12(0,0) = (2p) " ‘[0~ 0,(8) — pyr/2)°,

by1(0,0) = 2w~ o —a(0) +pyr/2)7,

by3(0,0) = ()~ o +pyr),

b3:(0,0) = )~ o —myl, 4.
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Fig. 5. Potential energy at fixed temperature and stress as a function of strain.

where each b,;(6, o) is defined for values of (6, &) at which the ith and jth phases co-exist,
i.e. the point (6, ¢) lies in the region common to P;and P;in Fig. 3; 6,(8) is the austenite-
martensite Maxwell stress introduced previously in (3.13).

Nucleation

Considering first the question of nucleation, we suppose that a particle which is in
phase { will transform to phase j by nucleation if the relevant energy barrier (8, ¢} is less
than some critical number #;;; the associated nucleation criterion is thus given by setting
b;/(0,0) = n; in (4.1). In view of the symmetry of the potential energy function G when
o = 0, we shall assume that both the 4 > M * and 4 — M ~ transitions nucleate at the same
value of temperature if the stress vanishes; a similar assumption for the reverse M+ -+ 4
and M~ — A transitions will also be made. The former value of nucleation temperature is
denoted by M, (for ‘martensite start’) while the latter is denoted by A, (for ‘austenite start’).
Finally, we will also assume that at any given temperature 6, the nucleation stress-level
for the M ™ —» M~ transition is the negative of the nucleation stress-level for the reverse
M~ —> M ™ transition at that same temperature. One can readily enforce these restrictions
on the #;;5; when combined with (4.1), this leads to the following nucleation criteria for the
various transitions:

G+ 0.(0) < 6,(M,) ford-M",

o+0,(0) = a,(4,) for M~ — A,

60,0 = —0,(M,) ford-M",

0—0,(0) < —6,(4,) for M* - A,

) for M~ > MT,

o< —X forM* M, (4.2)

SAS 31:6-6
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where 0,(6) is the austenite—martensite Maxwell stress given by (3.13) and the constants
M., A, and X are characteristic of the material ; necessarily, M, < 0; < 4,and £ > 0,

Figure 6 illustrates these nucleation criteria on the (6, o)-plane. If the inequalities in
{4.2) hold with equality, the resulting equations describe a set of straight lines in the (8, o)-
plane; the nucleation criterion states that, as indicated in the figure, crossing one of these
lines nucleates an associated transition. Figure 6, as shown, corresponds to a material for
which the critical nucleation stress-level given by (4.2) for the M ™ — A transition exceeds
the corresponding stress-level for the 4 —» M * transition for some range of temperature,
ie.

Z > (1/2)(pdr/yr0r) (A, — M) ; 4.3)

this need not necessarily be the case.

If the current state of the bar were to involve either a temperature or stress gradient,
one could determine the Jocation in the bar at which nucleation occurs. In this paper we
will consider a uniform bar that is always subjected to uniform stress and temperature
fields ; the location of the nucleation site in this bar is therefore rather arbitrary. If the bar
had been rendered inhomogeneous by a slight uniform taper with the small end at x = 0
and the large end at x = L, then the transition from a low-strain phase to a high-strain
phase would necessarily commence at x = 0 and the reverse transition would occur at
x = L. We shall arbitrarily assume that this is the case in our uniform bar as well.

Kinetics

Let x = s(1) denote the location at time 7 of a phase boundary in a bar, and let (y, 6, 6)
and (7,6, 0) denote the strain, temperature and stress at the two particles adjacent to the
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Fig. 6. Nucleation criteria.
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phase boundary on its left and right, respectively. Suppose that the particle on the left is in
phase i while the particle on the right is in phase j (recall that i = 1,2,3 corresponds to
phases 4, M*, M~ respectively). The driving force f = G(7,6,6)—G(7,6,0) on an ifj
phase boundary can be calculated from (4.1):

[ =yr{o—0,(8)) for an M */A interface,

[ = —yr{o—0,(8)) foran A/M" interface,

f =yH{o+06,6) for an A/M ~ interface,

f = —yrlo+0,(0)) foran M /A interface,

f =20y, for an M /M ~ interface,

f=—20y; foran M /M " interface. 4.4)

As the phase boundary propagates through the bar, the particle immediately in front
of it ‘jumps’ from one local minimum of G to another, and an explicit model of the kinetic
relation may be constructed by viewing this jumping process on an atomic scale. In order
to jump from one minimum of G to the other, an atom must acquire an energy at least as
great as that represented by the relevant energy barrier: for an atom undergoing a phase
i — phase j transition this barrier is b,;(c, 8) ; for the reverse phase j — phase i transition it
is b;(0, 0). Under suitable assumptions about the statistics of this process, the probability
that the energy of an atom is at least as great as B is exp (— B/K#) where K is Boltzmann’s
constant. The average rate at which atoms jump from one minimum to the other is taken
to be proportional to the probability of exceeding the corresponding energy barrier; we
assume for simplicity that the proportionality factor is the same for the phase i —» phasejand
phase j — phase i transitions. The velocity s of the phase boundary, being the macroscopic
measure of the net rate at which atoms change from phase i to phase j, is then taken to be
the difference in the average rates associated with the i - j and the j — i transitions:

b(c,8 b;(0,0
S=R,j{exp<~—r(;0—)>——exp<— r(;(f))} 4.5)

where r denotes the number of atoms per unit reference volume and R is a positive
proportionality factor, related in part to the frequency with which atoms attempt to cross
over to the new phase.

Substituting (4.1) into (4.5) now leads to an explicit representation for the kinetic relations
of the various transitions in the form § = v;,(c, 6). By using (4.4), they can be expressed in
the alternative form § = V,,(f,6):

_ [i+u’g'Al f
§=2R; exp{— 5urg* KD sinh kol (4.6)

where g = yr for both M */A4 and A/M ~ interfaces, and g = 2y, for an M */M ~ interface.
These kinetic relations automatically satisfy the condition f V;(f, 8) 2 0, so that any motion
consistent with them will conform with the entropy inequality (2.5). Moreover, at each
fixed 0, V;(f,0) increases monotonically with £, so that the greater the driving force, the
faster the speed of propagation. If the driving force fis small, so that quasi-static processes

take place close to phase equilibrium, one can approximate (4.6) to obtain the following
kinetic relation which is linear in 1
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5. THERMO-MECHANICAL RESPONSE OF THE MODEL

In this section we will utilize the constitutive model constructed in Sections 3 and 4 to
determine the uniaxial response of a bar when it is subjected to various thermo-mechanical
loadings. We describe the analysis associated with one of these loadings in some detail ; the
analysis corresponding to the remaining cases is conceptually similar.

Consider the isothermal mechanical loading of a uniform bar at a temperature 8 > 4,.
The bar is initially unstressed and is composed of austenite. As the stress o(¢) is mono-
tonically increased, the bar remains in this phase for some time 0 <7 < ¢,. By (3.11), the
elongation J of the bar during this stage of loading (measured from the reference state) is
given by

/L =o()/u+a(—0;) forO<t<t,. (5.1)

From Fig. 6 and the paragraph below (4.3) we conclude that M * martensite is nucleated
at the left end of the bar at the instant ¢ = ¢,, where ¢, is given by

o(11) = 0,(0) — . (M,). (5.2)

During the next stage ¢, <t < f,, the bar is composed of M * martensite on the interval
0 < x < 5(f) and austenite on s(¢) < x < L. By (3.11),

3(t) = s(Dlo@/u+yr+ a0 -0+ [L—s@]lo()/u+a(0—0p)] forr, <1<t (5.3)

where the phase boundary location s(7) is found by integrating the appropriate kinetic
relation in (4.6), (4.4), i.e.

fz(t)wzv%/‘*} sinh {f(t)

2ury2K0 w} s(1) =0, 54

$(5) = 2R exp {—— 7 KO

with the driving force f(¢) = [6(2) —0,(8)]yr. At the instant ¢ = ¢,, the phase boundary
reaches the right end of the bar, s(t,) = L. For 1 > 1, the bar consists entirely of M
martensite and its response, according to (3.11), is given by

(/L =a@®/ut+yr+a(@—08;) fort>t,. (5.5)

A similar analysis can be used to describe the response corresponding to subsequent
unloading, as well as to loading by compressive stress in which case the M~ variant is
involved instead of M *.

In order to study the quantitative, as well as qualitative, suitability of our model, we
chose values for the material parameters that are of the correct order of magnitude for a
Cu-Al-Ni shape-memory alloy:

u=3x10""N/m? p=8000kg/m’>, «=16x10"%°K, c=400J/kg°K,
yr = 0.05, Ar=5.7x10"J/kg, 6;=307°K,
A, =308°K, M,=306°K, I =25x10"N/m?
K=1381x10"2J°K, R, =0.0448m/s, r=9.046x 107" atoms/m*.  (5.6)

The values of the transformation and nucleation temperatures 6,, 4, and M, were taken
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from Otsuka et al. (1979) and correspond to an alloy whose composition is Cu-14.0 Al-
4.2 Ni (wt%). By comparison, the remaining material parameters are less sensitive to the
alloy composition and the values chosen for them do not correspond to an alloy of this
precise composition. The modulus g, the transformation strain y; and the latent heat 4, at
the transformation temperature were estimated using data from Otsuka and Wayman
(1976). The values of the mass density p, coefficient of thermal expansion « and specific
heat ¢ were estimated using information in the Metals Handbook (1979). The value of the
M™[M ~ nucleation stress ¥ was obtained from Sakamoto ef al. (1979). The value of R},
was estimated by using our kinetic relation (4.6) in conjunction with the austenite-martensite
interface velocities measured by Grujicic et al. (1985) and reported in their Fig. 5; the
remaining R;;s were arbitrarily assumed to have this same value. The number of atoms per
unit reference volume, r, was calculated by using the mass density, alloy composition and
the atomic masses of Cu, Al and Ni.

There are four other material parameters, viz. m, M, 6,, and 8,,, that are involved in
the description of our model. Even though they do not affect the response of the material,
the validity of the model requires that such numbers exist in a manner that is consistent
with the various constitutive inequalities given in the appendix. One can show that there is
a range of acceptable values for these parameters.

6. RESULTS

(i) Figure 7 shows two force—elongation curves corresponding to isothermal mech-
anical load cycling by the application of a prescribed stress. Figure 7(a) corresponds to a
temperature below M,, with the bar transforming between the M ~ and M * variants without
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Fig. 7. Isothermal mechanical loading.
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involving austenite. Figure 7{b) corresponds to a temperature greater than A, ; as the stress
increases from a sufficiently negative value, the bar transforms from M~ to 4 and then
from A4 to M ™. The loading and unloading rate underlying both of these figures is
f6(r)] = 5x 10* N/m? s. The response depicted in these figures is similar to that observed
by Nakanishi (1983) for Au-Cd; see Figs 10, 13 in their paper.

(ii) Figure 8 shows two elongation—~temperature curves which result from cycling the
temperature with the stress held fixed ; Figs 8(a) and (b) correspond respectively to tensile
and compressive values of the applied stress. The bar transforms between the phases 4 and
M* in the former case, between the phases 4 and M ™ in the latter. Observe that the
transformation from the high temperature phase {(austenite) to the low temperature phase
involves an elongation in Fig. 8(a) and a contraction in Fig. 8(b). The heating and cooling
rate underlying both of these figures is |8(¢)] = 0.001 °K/s. The response depicted in these
figures is similar to the response described by Krishnan ez a/. (1974), Fig. 13 for Cu-Zn at
a constant tensile stress and that observed by Burkart and Read (1953), Fig. 6 for In-T!
under compressive stress.

If the initially austenitic bar remains stress-free as it is cooled from a high temperature,
the phases M ™ and M~ are both nucleated simultaneously at 8 = M, the former at the
left end of the bar, the latter at the right end ; they then grow at the same rate according to
their kinetic relations, and once the transformation is complete, the bar consists of an equal
mixture of M " and M . Since the transformation strains involved in the 4 - M™* and
A — M~ transformations have been taken to be y, and -y, respectively, the length of
the bar does not change due to transformation. The elongation—temperature response in
this case is therefore a straight line. This is a trivial, one-dimensional manifestation of
what is sometimes referred to as ‘self accommodation’.
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Fig. 9. The shape-memory effect.

(iii) Figure 9 displays the result of a calculation which attempts to model the ‘shape
memory effect’. We begin with a martensitic bar which is composed of M * for 0 < x < L/2
and M~ for L/2 < x < L and whose initial temperature is less than M,. The bar is first
subjected to a program of isothermal mechanical loading during which time the stress is
first increased and then decreased back to zero. At the end of this stage of loading, the bar
is composed of M only (as can be deduced from Fig. 6), the stress has returned to the
value zero, and the bar has suffered a permanent elongation. During the next stage, the bar
remains unstressed while it is first heated to a temperature greater than A, (which, according
to Fig. 6, transforms it to phase 4) and is then cooled back to its original temperature
(which, by Fig. 6, leads to a configuration involving equal amounts of M* and M 7); at
the end of this thermal loading, the state of the bar is identical to its original state. In the
calculations underlying Fig. 9 we took the mechanical loading and unloading rate to be
[6(7)] = 8 x 10° N/m? s and the heating and cooling rate to be |6(f)| = 0.08 °K/s. Schematic
figures similar to Fig. 9 may be found, for example, in Krishnan ez al. (1974).

(iv) Next we simulate one of the experiments carried out by Ehrenstein (1985). Con-
sider a martensitic bar which is initially at zero stress and at a temperature < M,; the
segment 0 < x < L/2 of the bar consists of M~ while L/2 < x < L consists of M*. We
consider a time interval 0 < < #¢ and apply a stress o(#) = ¢,(1 —cos (27¢/80)) while
simultaneously varying the temperature according to 6(¢) = 8(0) +¢,(1 —cos (2nt/tz)). We
take 0 < ¢, < /2 and o(t:/2) < 6(0(t5/2)) —0,(4,) which ensures that the hottest tem-
perature 8(tg/2) is large enough to nucleate austenite. The loading parameters underlying
our calculation are ¢, = 5x10° N/m? &, =4 °K, 6(0) = 304 °K and t; = 4000 s. The
resulting elongation history is shown in Fig. 10(a) and may be compared with Ehrenstein’s
observations {see Fig. 2 in Achenbach (1989)]; the qualitative behavior is seen to be the
same ; since the material used in the experiment was Nitinol whereas the material parameters
employed here correspond to Cu-Al-Ni, a quantitative comparison cannot be made. A
simulation of this experiment has also been carried out by Achenbach (1989) using a
different model.

The calculations show that the macroscopic response of the bar plotted in Fig. 10(a)
is associated with the local transitions shown in Fig. 10(b) : during an initial stage, roughly
0 < 1 < 9785, the bar consists of only phases M ~ and M * ; the driving force onthe M~ /M *
interface is negative [by (4.4)] and this causes the interface to move leftward in accordance
with the appropriate kinetic law (4.6) ; thus during this stage the amount of M * increases
at the expense of M ~. For the heating rate used in our calculation, this leftward moving
interface has not yet reached the end x = 0 of the bar when ¢ = 978 s; at roughly this
instant, the nucleation criterion for the M~ — A transition is satisfied and phase A is
nucleated at the left end of the bar. As 1 continues to increase, the newly emerged A/M -
interface propagates to the right (since its driving force is positive) in accordance with its
kinetic law, while the M ~/M ™ interface continues to move leftward ; the amount of phase
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Fig. 10. Response to thermo-mechanical loading.

M ~ thus continues to decrease while the amounts of phases 4 and M * increase. A short
while later (¢ ~ 1026 s) the nucleation criterion for the M * — A transition is satisfied and
phase 4 is nucleated at the right end of the bar. There are three interfaces in the bar at this
time, viz. a rightward moving 4/M ~ interface and two leftward moving interfaces, one
M~ /M* and the other M */A4. At ¢t ~ 1136 s the first two of these interfaces meet so that
during the next stage, the bar transforms from M* — 4 as the 4/M * interface advances
towards the M */A interface. Eventually these two phase boundaries meet at ¢ ~ 1314 s and
the entire bar consists of phase 4. During the next stage 1314 < ¢ < 3304, the bar continues
to remain in phase 4. The temperature which was increasing for 0 < 7 < 2000 begins to
decrease at ¢ = 2000 s; at t &~ 3304 s the bar is sufficiently cool for phase M * to nucleate
and begin to grow, until eventually at ¢ ~ 3834 s the entire bar consists of M ~.

The qualitative features of the elongation history shown in Fig. 10(a) can be understood
from the preceding discussion [Fig. 10(b)] by keeping in mind that M ~ is the low-strain
phase, A is the intermediate-strain phase and M * is the high-strain phase. During the initial
stages 0 < 1 < 978 and 978 < ¢ < 1026, when M ~ is disappearing, first due to the growth
of M * and then due to the growth of both M * and A4, the bar gets longer. During the stage
1136 < t < 1314 the bar is transforming from M* to A4 and so the bar gets shorter.
Next, for 1314 < ¢ < 3304, the bar remains in phase 4 and so its length does not change
appreciably. Finally, for 3304 < ¢ < 3834, the bar transforms from 4 to M * and so it gets
longer again.

(v) Finally we calculate the response associated with repeated unloading and reloading.
Consider a bar of austenite at an initial temperature > A4,. In the first calculation, the bar
is subjected to an isothermal mechanical loading during which the elongation is increased
monotonically until A * martensite has nucleated and begun to grow ; then, before the bar
has transformed completely to martensite, it is unloaded by decreasing the elongation
back to zero. The calculation is now repeated, with unloading commencing at different
instants. Figure 11(a) shows the result of this calculation (carried out at # = 330 "K and
|6] = 8.333x 10 ®my/s).



Continuum model for shape-memory alloys 2247

Stress o/Z
(T

4] 0.02 G.04 0.08
Elongation &L
(8) PARTIAL LOADING FOLLOWED BY UNLOADING.

Stress o/

[¢] 0.02 0.04 0.06
Elongation &/L

(b) PARTIAL UNLOADING FOLLOWED BY RELOADING.
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In the second calculation, the bar is subjected to an isothermal mechanical loading
during which the elongation is increased until the bar has transformed completely into
M™ martensite. Next, the elongation is decreased monotonically until austenite has been
nucleated and begun to grow; then, before the bar has transformed completely back to
austenite, it is reloaded by increasing the elongation. The calculation is now repeated, with
reloading commencing at different instants. Figure 11(b) shows the result of this calculation
which was also carried out at # = 330 °K and |6| = 8.333 x 10~ ® m/s.
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APPENDIX: RESTRICTIONS ON THE MATERIAL PARAMETERS

Here we shall list all of the inequalities not displayed previously which the material parameters must satisfy.
According to the statement below (3.12) the equations of the boundaries of the regions P, in the (y, 6)-plane are
given by

F1(0) = —0,(0)/u—yr+a(@—0;) for0<0<8,,
72(0) = —ou(0)/u+a(6—07) for 8, <8 <0,
73(0) = 0.4(8)/u+ (6~ 07) for 6, < 6 < 8y,
$4(0) = 6, (O)/p+yr+a(8—67) for0 <6 <6,

(A.l)

where the stress-levels a,,(6) and o,(6) are given by (3.12). In order that the corresponding straight lines in the
v, B-plane be arranged as shown in Fig. 1, it is necessary that §,(8) > §,(6) > 7,(8) > 7,(8) > —1for 8, <6 <0,
and that 7,(0) > 7,(6) > — 1 for 0 < 8 < 8,,. These inequalities can be expressed, upon using (A.1), as
0<oy(0) <o, +uyr < pu+px(@—0;) forb, <6 <0, Ao
0 < 0(0) +1yy < pi+ pe(8—07) for0 <6 <0,. (A-2)

Next, since we assumed in Section 3 that all three phases M ~, 4 and M * exist when ¢ = 0 and 0 = 0, it is
necessary that the corresponding strains y = —y, 0 and y; lie in the appropriate strain ranges as defined by Fig.
I. In view of (A.1) and (A.2), one finds that this holds if and only if

yr<l, 0,0 <0. (A.3)

We turn finally to the issue of extending the Helmholtz free-energy function (3.10) to the unshaded (‘unstable’)
region of the (y., 8)-plane shown in Fig. 1. Even though we do not need an expression for i on this region, it is
still necessary to know that (3.10) can be extended to that region in the manner previously assumed {see paragraph
below (3.12)]. The ability to do this is equivalent to the ability to connect each adjacent pair of rising branches
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of the stress—strain curve in Fig. 2 by a declining branch with prescribed area under it. Since the stress—strain curve
is to be declining for strains in the intervals (y,(8), y,(8)) and (y,(6),7,(8)) when 6,, < 6 < 8,,, and on (,(6), 7,(6))
when 0 < # < 8,,, it is necessary that

g (0) > 0,(0) forf, <8<y, —0,{0) > 0,0 for0<6<b,. (A.4)

Next, as is readily seen from Fig. 2(a), for 6,, < 6 < 8,,, the area under the graph of ¢(:, §) between y = 7,(8)
and y = §,(#), must necessarily lie between the areas of the two rectangles with the same base (7,(t), 4(6)) and
with heights a,,(0) and ¢,,(8). A similar restriction applies to the area between y = 7,(0) and y = 7,(8), and for
0 < 0 < 0, to the area between y = §,(0) and y = 7,(6). Thus it is necessary that

—u(O)(F2() —7:(8) < pY(7:2(0),8) = py (7.(6),0) < —0,.()(72() —7:(6)),
Tn(O)(7:(0) —7:(0) < pi(74(0),0) — py(7:(0). ) < o1(B)(F4(B) —7:(8)), (A.5)
TG (0) —F1(0)) < pP(F4(8), ) — oY (§:(0), 8) < — 0, () F.(0)—7,(8)),

where the first two sets of inequalities in (A.5) hold for 6, < 8 < 8,,, while the last set holds for 0 <8< 8,
Conversely, given two points (7,(0), 6, (8)) and (,(0),¢,,(6)) in the (3, 0)-plane, with §,(8) > #;(6), a sufficient
condition for the existence of a continuous decreasing function 6 (-, 8) connecting these two points, which is such
that the area under it is py (7 ,(6), 6) — p($,(8), 8}, is that (A.4), and (A.5), hold. The requirements (A.4), (A.5)
are therefore necessary and sufficient for the extendability of the Helmholtz free-energy function (3.10) to the
unstable region.

The inequalities (A.5) can be expressed equivalently in terms of the stresses 6,,(0), 6,,(6) and o,(8) as

[04(8) —0,(0)]* < 2uy[6,(0) —0,,(0)] for b, <8 <0y,
[64(0) —0u(D]* < 2py7]04(0) —0,(B)] for 0, < 8 <Oy, (A.6)
—pyr < 6,(6) <0 for0< 8 <8,.

The inequalities (A.2)-(A.4) and (A.6) must be enforced on the material model. They can be reduced by
using (3.12}, (3.13) into temperature independent inequalities that involve only the material parameters. We
shall not display the resulting inequalities here. These inequalities, as well as (4.3), are to be imposed on the
material constants entering into our model. One can verify that the particular values (5.6) of the material
constants, together with a range of values of the four remaining parameters m, M, 8, and 4,,, do satisfy these
inequalities. For example, one possible set of values of the latter four parameters is m = 9.7253 x 107 %/°K,
M = 101371 x 107°/°K, 8,, = 285 °K, 0,, = 10000 °K ; as mentioned previously, the particular values of these
four material constants do nor affect the response of the material.



